Improved constraint consensus methods for seeking feasibility in nonlinear programs
نویسندگان
چکیده
The Constraint Consensus method moves quickly from an initial infeasible point to a point that is close to feasibility for a set of nonlinear constraints. It is a useful first step prior to launching an expensive local solver, improving the probability that the local solver will find a solution and the speed with which it is found. The two main ingredients are the method for calculating the feasibility vector for each violated constraint (the estimated vector to the closest point that satisfies the constraint), and the method of combining the feasibility vectors into a single consensus vector that updates the current point. We propose several improvements: (i) a simple new method for calculating the consensus vector, (ii) a predictor-corrector approach to adjusting the consensus vector, (iii) an improved way of selecting the output point, and (iv) ways of selecting subsets of the constraints to operate on at a given iteration. These techniques greatly improve the performance of barrier method local solvers. Quadratic feasibility vectors are also investigated. Empirical results are given for a large set of nonlinear and nonconvex models.
منابع مشابه
Improving solver success in reaching feasibility for sets of nonlinear constraints
Whether a given nonlinear solver can reach a feasible point for a set of nonlinear constraints depends heavily on the initial point provided. We develop a range of computationally cheap constraint consensus algorithms that move from a given initial point to a better final point that is then passed to the nonlinear solver. Empirical tests show that this added step greatly improves the success ra...
متن کاملThe Sine-Cosine Wavelet and Its Application in the Optimal Control of Nonlinear Systems with Constraint
In this paper, an optimal control of quadratic performance index with nonlinear constrained is presented. The sine-cosine wavelet operational matrix of integration and product matrix are introduced and applied to reduce nonlinear differential equations to the nonlinear algebraic equations. Then, the Newton-Raphson method is used for solving these sets of algebraic equations. To present ability ...
متن کاملSmooth SQP Methods for Mathematical Programs with Nonlinear Complementarity Constraints
Mathematical programs with nonlinear complementarity constraints are refor-mulated using better-posed but nonsmooth constraints. We introduce a class offunctions, parameterized by a real scalar, to approximate these nonsmooth prob-lems by smooth nonlinear programs. This smoothing procedure has the extrabenefits that it often improves the prospect of feasibility and stability...
متن کاملA Linear Matrix Inequality (LMI) Approach to Robust Model Predictive Control (RMPC) Design in Nonlinear Uncertain Systems Subjected to Control Input Constraint
In this paper, a robust model predictive control (MPC) algorithm is addressed for nonlinear uncertain systems in presence of the control input constraint. For achieving this goal, firstly, the additive and polytopic uncertainties are formulated in the nonlinear uncertain systems. Then, the control policy can be demonstrated as a state feedback control law in order to minimize a given cost funct...
متن کاملImproved infeasible-interior-point algorithm for linear complementarity problems
We present a modified version of the infeasible-interior- We present a modified version of the infeasible-interior-point algorithm for monotone linear complementary problems introduced by Mansouri et al. (Nonlinear Anal. Real World Appl. 12(2011) 545--561). Each main step of the algorithm consists of a feasibility step and several centering steps. We use a different feasibility step, which tar...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Comp. Opt. and Appl.
دوره 54 شماره
صفحات -
تاریخ انتشار 2013